
CI-HPC Documentation

Jan Hybs

Jul 02, 2019

CI-HPC Documentation

1 Showcase 3
1.1 Visualisation page . 3
1.2 View configuration . 5
1.3 Zoom detail . 6
1.4 Boxplot view chart . 8
1.5 Detail view . 9
1.6 Link to commit . 10
1.7 Frame breakdown . 11
1.8 Scaling mode view . 13
1.9 Commit squeeze . 14

2 CI-HPC Documentation & Installation 17
2.1 Prerequisites . 18

3 Installing a Jenkins server 19
3.1 Configuring a Jenkins server . 20
3.2 cihpc arguments . 26

4 Configuring project on HPC server 29

5 config.yaml specification 31
5.1 Terminology . 31
5.2 config.yaml example . 31
5.3 config.yaml structure . 32

5.3.1 config.yaml variables specification . 33
5.3.2 config.yaml collect specification . 34

6 MongoDB configuration 37
6.1 secret.yaml structure . 38

6.1.1 secret.yaml examples . 39

7 Configuring Flask server 41
7.1 Start the flask server with the help of a bin/server script: . 41

7.1.1 Configuring the server host and port . 41
7.2 Configuring www folder . 42
7.3 Visualisation settings aka what to visualise . 42
7.4 [optional] Create a symlink to Apache www folder: . 42

i

ii

CI-HPC Documentation

A simple framework which monitors a performance and scalability of software packages. The framework presented
here combines Continuous Integation & High Performance Computing together with a minimalistic set of Python
scripts. The results can be visualised in form of static Jupyter notebook or in an interactive web page.

CI-HPC Documentation 1

CI-HPC Documentation

2 CI-HPC Documentation

CHAPTER 1

Showcase

1.1 Visualisation page

3

CI-HPC Documentation

4 Chapter 1. Showcase

CI-HPC Documentation

1.2 View configuration

1.2. View configuration 5

CI-HPC Documentation

1.3 Zoom detail

6 Chapter 1. Showcase

CI-HPC Documentation

1.3. Zoom detail 7

CI-HPC Documentation

1.4 Boxplot view chart

8 Chapter 1. Showcase

CI-HPC Documentation

1.5 Detail view

1.5. Detail view 9

CI-HPC Documentation

1.6 Link to commit

10 Chapter 1. Showcase

CI-HPC Documentation

1.7 Frame breakdown

1.7. Frame breakdown 11

CI-HPC Documentation

12 Chapter 1. Showcase

CI-HPC Documentation

1.8 Scaling mode view

1.8. Scaling mode view 13

CI-HPC Documentation

1.9 Commit squeeze

14 Chapter 1. Showcase

CI-HPC Documentation

1.9. Commit squeeze 15

CI-HPC Documentation

Todo: Add image captions and descriptions

16 Chapter 1. Showcase

CHAPTER 2

CI-HPC Documentation & Installation

Installation process is not that simple, so sadly you won’t find here something like this:

./configure && make && make install

Perhaps in the future version, installation will be easier. . . but if you know, what you are doing, you can setup your
project within 15 minutes.

In order to install CI-HPC framework, please understand its structure first:

jenkins

From the illustration above, you can see there are several servers.

17

CI-HPC Documentation

1. With BLUE color is a Jenkins server. This server is in charge of git repository checking. If Jenkins detects any
change in repository, it will contact an HPC login node to starts off the installion and testing of your project.

2. HPC system (in a RED color) consist of 2 parts:

1. The login node will translates what is Jenkins trying to do and will prepare a PBS job, that will install your
project and after that run your benchmark for your project.

2. The compute nodes, that will take care of the installation and testing and when they are done, they will
store the results to a database.

3. The database server (in a GREEN color) has a MongoDB database running and stores and loads benchmark
results.

4. You have 2 options when it comes to visualising your results (both options are marked with YELLOW color):

1. The first option (slightly easier but not by much) is (probably soon to be deprecated Jupyter Notebook
server. This solution offers great customization but requires knowledge about Python and some python’s
scientific packages.

2. The seconds option, interactive website, offers more interactivity and better visualisation. Thanks to
highcharts js framework, you have plenty of options for your charts. You can zoom in thre results,
filter the series or simply (by clicking) go to the commit, which you are interested in.

5. Along interactive website, you need to have additional server running (the data need to get to the web page
somehow), and this is why there is this last server (in PURPLE color). It has a python flask server running,
which is serving the data from the database back to the website.

2.1 Prerequisites

Before configuring anything, make sure you have:

1. an access to the HPC node (login preferable via SSH Key-Based Authentication).

2. an access to a CI server such as Jenkins or other similar tool. If you have no such server available, CRON may
suffice.

3. an access to the database server, for now only MongoDB is supported. You can get free hosting on MongoDB
Atlas for up to 500MB.

4. an access to a jupyter notebook server for visualisation. For education purposes Azure notebooks is possible
option.

or

access to a web server and access to a flask server. Flask server can be isntalled easily via pip packaging tool.

Note: Jenkins server, Database server and visualisation servers can be running on single computer.

18 Chapter 2. CI-HPC Documentation & Installation

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://notebooks.azure.com

CHAPTER 3

Installing a Jenkins server

1. Install Jenkins server on your server manually or use docker solution like this or this

Hopefully you should see something like this in your browser:

jenkins-
loading

2. Configure Jenkins installation. No need to install all the plugins, but make sure you have the following plugins
installed:

1. Git

2. Credentials Binding

3. Parameterized Trigger

19

https://wiki.jenkins.io/display/JENKINS/Installing+Jenkins+on+Ubuntu
https://github.com/jenkinsci/docker
https://jenkins.io/doc/book/installing/#downloading-and-running-jenkins-in-docker

CI-HPC Documentation

jenkins-
plugins

3.1 Configuring a Jenkins server

1. Create new Job (type can be Freestyle project)

20 Chapter 3. Installing a Jenkins server

CI-HPC Documentation

jenkins-
new

2. Setup git connection to your repository

3.1. Configuring a Jenkins server 21

CI-HPC Documentation

jenkins-
git

3. Make sure Poll SCM is set (CRON syntax)

Note: The value H 18 * * * translates to daily, between 6PM to 7PM

22 Chapter 3. Installing a Jenkins server

CI-HPC Documentation

jenkins-
poll

4. Add Shell Build step to your project:

You can write your own script for starting cihpc but the most common scenarios are listed here. At the start of
the Build step include your. project configuration:

CIHPC_PROJECT_NAME="hello-world"
CIHPC_HPC_USERNAME="jan-hybs"
CIHPC_HPC_URL="charon-ft.nti.tul.cz"
CIHPC_WORKSPACE="/storage/praha1/home/jan-hybs/projects/ci-hpc"

jenkins-

3.1. Configuring a Jenkins server 23

CI-HPC Documentation

shell

• when using SSH Key-Based Authentication: Setup key-based SSH login to be able to login to an HPC
server without password or ANY other prompts.

mkdir -p ~/.ssh
ssh-keyscan -H $CIHPC_HPC_URL > ~/.ssh/known_hosts

ssh -t $CIHPC_HPC_USERNAME@$CIHPC_HPC_URL \
$CIHPC_WORKSPACE/bin/cihpc \

--project "hello-world" \
--git-commit "hello-world:$GIT_COMMIT" \
--git-branch "hello-world:$GIT_BRANCH" \
--git-url "$GIT_URL" \
--execute local \
install

Make sure you connect to the server at least once or automatically add entry to the known_hosts using
commands:

mkdir -p ~/.ssh
ssh-keyscan -H $CIHPC_HPC_URL > ~/.ssh/known_hosts

• when using Password authentication: If your server does not support key-less login, you can use sshpass
(but it is not recommended as you need to keep your raw password somewhere on the server).

Note: make sure sshpass is installed on the Jenkins server and that your file containing password has
permissions like 0400 (read only for owner).

mkdir -p ~/.ssh
ssh-keyscan -H $CIHPC_HPC_URL > ~/.ssh/known_hosts

CIHPC_PASSWD_PATH="/path/to/your/password-file"
sshpass -f $CIHPC_PASSWD_PATH \

ssh -t $CIHPC_HPC_USERNAME@$CIHPC_HPC_URL \
$CIHPC_WORKSPACE/bin/cihpc \

--execute local \
--project "hello-world" \
--git-commit "hello-world:$GIT_COMMIT" \
--git-branch "hello-world:$GIT_BRANCH" \
--git-url "$GIT_URL" \
--execute local \
install

• when using SSH Key-Based Authentication (if you do not have access to the file system on Jenkins server,
use Credentials Binding plugin)

CIHPC_PASSWD_PATH="/path/to/your/password-file"

mkdir -p ~/.ssh
cp $MY_SECRET_PK ~/.ssh/id_rsa
ssh-keygen -y -f ~/.ssh/id_rsa > ~/.ssh/id_rsa.pub
ssh-keyscan -H $CIHPC_HPC_URL > ~/.ssh/known_hosts

ssh -t $CIHPC_HPC_USERNAME@$CIHPC_HPC_URL \
$CIHPC_WORKSPACE/bin/cihpc \

--project "hello-world" \
--git-commit "hello-world:$GIT_COMMIT" \

(continues on next page)

24 Chapter 3. Installing a Jenkins server

https://www.ssh.com/ssh/copy-id
https://askubuntu.com/questions/282319/how-to-use-sshpass

CI-HPC Documentation

(continued from previous page)

--git-branch "hello-world:$GIT_BRANCH" \
--git-url "$GIT_URL" \
--execute local \
install

Setup Bindings

jenkins-
creds

Add SSH Username with private key kind

3.1. Configuring a Jenkins server 25

CI-HPC Documentation

jenkins-
creds-2

3.2 cihpc arguments

When calling bin/cihpc binary you can pass plenty of arguments (see the file), but couple of them are worth
mentioning in this section:

• arguments install and test

If install is given, will run all the steps within the install section. If test is given, will run all the
steps within the test section.

Example:

$> bin/cihpc --project=foo --execute local install
...
processing project foo, section ['install']
...

26 Chapter 3. Installing a Jenkins server

CI-HPC Documentation

$> bin/cihpc --project=foo --execute local
...
processing project foo, section ['install', 'test']
...

Note: by default both install and test are set, meaning entire project is processed.

• option --execute

Valid values for now are either local or pbs. If set to local, the script will execute given section(s) on a
login node. This can be usefull when installing your software. Example:

$> bin/cihpc --project=foo --execute local
executing script tmp.entrypoint-1532530773-2c4e85.sh using local system
...

Note: by default no system is set, you should always set which system to use.

3.2. cihpc arguments 27

CI-HPC Documentation

28 Chapter 3. Installing a Jenkins server

CHAPTER 4

Configuring project on HPC server

Note: Assuming we are testing project named hello-world.

1. Login to HPC server and clone ci-hpc repository:

cd $WORKSPACE # directory where you keep your projects
git clone https://github.com/janhybs/ci-hpc.git
cd ci-hpc

1. Install necessary pip packages:

Execute install.sh script located in the bin folder. It is basically shortcut for a pip3 install -r
requirements.txt. You can also pass any arguments to the pip. It is expected to have python3 and
pip3 in the path.

bin/install.sh --user --upgrade

To install packages system wide, do not add the --user flag:

bin/install.sh --upgrade

2. Create configuration file config.yaml for the project

export PROJECT_NAME=hello-world

mkdir -p cfg/$PROJECT_NAME
nano cfg/$PROJECT_NAME/config.yaml

1. Setup config.yaml configuration file

Please refer to config.yaml section to find out more about configuration.

29

config.yaml.html

CI-HPC Documentation

30 Chapter 4. Configuring project on HPC server

CHAPTER 5

config.yaml specification

5.1 Terminology

• section

By a section we understand either testing or installing section. A section is a main configuration block
which groups together installation or benchmark testing procedures. A section can contain zero or more
steps.

Note: Testing section named install should contain a configuration for the project installation, compilation
or even git cloning. Testing section called test contains configuration for the benchmark testing.

• step

A step is main unit which can contain shell commands, git cloning and more.

• shell

A shell part can contain bash commands (multiline line string)

5.2 config.yaml example

start of a install section
install:

first step in the install section
- name: repository-checkout
git:

- url: git@github.com:janhybs/bench-stat.git

you can also omit shell if there is no need for it
shell: |

echo "By this point, the repository is already cloned"
echo "And checkout out to latest commit"

(continues on next page)

31

CI-HPC Documentation

(continued from previous page)

seconds step in the install section
- name: compilation-phase
shell: |

cd bench-stat
./configure --prefix=$(pwd)/build
make && make install

start of a test section
test:
first step in the test section
- name: testing-phase
shell: |

cd bench-stat
build/O3.out

5.3 config.yaml structure

Note: keys in [brackets] are optional.

value is list of steps
install:

name of the step
- name: string

description of the step
[description]: string

default true, if true step is enabled
will be processed, otherwised will be skipped
[enabled]: boolean

default false, if true shell is started with set-x
[verbose]: boolean

default 1, number of this step repetition
(useful for benchmark testing)
[repeat]: int

bash commands to be executed
[shell]: string

default log+stdout, how should be output
of the shell be displayed, possible values:
log - logging to log file only
stdout - only display output
log+stdout - combination of both
[output]: string

if set, will execute shell in side container
value must command(s) which when called will
start container (docker/singularity), command
must contain string %s at the end
%s will be subsituted with a suitable command

(continues on next page)

32 Chapter 5. config.yaml specification

CI-HPC Documentation

(continued from previous page)

#
examples:
container: |
docker run --rm -v $(pwd):$(pwd) -w $(pwd) ubuntu %s
container: |
module load singularity
singularity exec -B /mnt sin.simg %s
[container]: string

complex type, if set, will create build matrix of variables
detailed explanation below
[variables]: <variables>

complex type, if set, will collect results
detailed explanation below
[collect]: <collect>

5.3.1 config.yaml variables specification

This field will allow you to create so called build matrix of all possible combinations of the given variables. It is
especially useful when running multiple benchmarks which are basically the same and only thing which is different are
arguments passed to the binary. It this case there is no need to copy the step in the install section over and over again
only to change a single word in shell. The principle is the same as the build matrix used in a .travis.yml

You can specify this fields and you can set unlimited amount of variables and their values like this:

variables:
- matrix:

- var-name: [value-1, value-2, value-3]
- foobar: [1, 2, 3, 4]
- test: [cache, io]

The exmaple above will expand to 24 (3 * 4 * 2) individual configurations, variables are available in the shell
field (and in the extra field of a collect field).

A shell field can use these variables with help of placeholders which are in <variable> form, usage like this:

shell: |
echo "Running test <test> with arguments foobar=<foobar> and var-name=<var-name>

→˓"

the first echo will look like this:
Running test cache with arguments foobar=1 and var-name=value-1

benchmark/O3.out <test> --foobar=<foobar> -v <var-name>
the first call of the binary benchmark/O3.out will look like this:
benchmark/O3.out cache --foobar=1 -v value-1

The value of the variable in a matrix field must be an array. It can be array of strings, ints, floats, or even dictionaries.
The example below will demonstrate usage of dictionaries.

variables:
- matrix:

- foobar:
- foo: 10.65 # the first value

(continues on next page)

5.3. config.yaml structure 33

https://docs.travis-ci.com/user/customizing-the-build/#build-matrix

CI-HPC Documentation

(continued from previous page)

bar: -3.14
- foo: 1.05 # the second value
bar: 42.00

- test: [cache, io]

and usage in shell:

shell: |
echo "Running test <test> with arguments foo=<foobar.foo> and bar=<foobar.bar>"

the first echo will look like this:
Running test cache with arguments foo=10.65 and bar=-3.14"

benchmark/O3.out <test> --foo=<foobar> --bar=<var-name>
the first call of the binary benchmark/O3.out will look like this:
benchmark/O3.out cache --foo=10.65 --bar=-3.14

There can be multiple matrix fields as well (for when you don’t want all the combinations):

variables:
- matrix:
- benchmark: 01_square_regular_grid
- mesh:

- 1_15662_el
- 2_31498_el
- 4_62302_el
- 8_124498_el

- matrix:
- benchmark: 02_cube_123d
- mesh:

- 1_15786_el
- 2_29365_el
- 3_47367_el
- 4_58803_el

5.3.2 config.yaml collect specification

If you specify collect in a step of the install section, CI-HPC framework will automatically look for the benchmark
results in form of json or yaml files. But you have to tell CI-HPC, what these files are, and how to work with them.

collect:
value must be a string containing a path specification.
pathname can be either absolute (like /foo/bar/result.json) or
relative (like bar/*/*.json), and can contain shell-style wildcards
double asterisk ** will match any files and zero or
more directories and subdirectories
the value is usually something like
directory/*.json
more here https://docs.python.org/3.6/library/glob.html
files: string

path to the repository from which git information is taken
if set will determine commit, branch and datetime of the current HEAD
repo: string

(continues on next page)

34 Chapter 5. config.yaml specification

CI-HPC Documentation

(continued from previous page)

a path to the python module which will take care of the parsing and
storing. There is a generic module which does a decent job, so if
your result output format can be easily edited, it will work just fine
[module]: string

location where matched files can be moved to after the files has
been processed. This will simply move the files to a location
so if you have multiple files from single execution with the same name
they will be overwritten, to avoid that see 'cut-prefix' below
You can avoiding processing the same results twice.
(it is recommended to put the files away)
[move-to]: string

if move-to is set, will cut the path prefix of your files
it is especially useful when your results are located deep structure
or if they are in a structure, you want to preserve
[cut-prefix]: string

after the processing is done, you can add some extra properties on top
you can even use variables from build matrix.
for example:
extra:
foo: true
size: <test-size|i>
will put extra two fields to a document,
which is headed to the database
they will be put in a system field:
{
system: {
foo: true,
size: 1024,
...
},
problem: {
...
}
}
The second variable size will be that of the typo of integer
this is bacause |i was specified at the end. All possible
conversions are:
|s for string (default)
|i for integer
|f for floats
[extra]: dictionary

if true, will save the processed results to the DB
[save-to-db]: boolean

5.3. config.yaml structure 35

CI-HPC Documentation

36 Chapter 5. config.yaml specification

CHAPTER 6

MongoDB configuration

Configuring MongoDB storage is basically just creating an user, which has permissions to read and write to a database.

When using MongoDB atlas you setup your project. By default you should have (or you should be asked to add) a
user, which is in role of a admin.

mongodb-
users

It is recommended to add another user, who can write to any database:

37

https://cloud.mongodb.com

CI-HPC Documentation

mongodb-
new

After the user is created you need to create a file secret.yaml inside cfg directory. Make sure only owner can
read this file as it will contain username, password and server to the MongoDB database.

6.1 secret.yaml structure

The file can contain configuration for multiple project, the main section is same as the name of your project (e.g.
hello-world). To setup connection to a db server create section databaseThis section can contain several
options but all of them are passed to the construcotr of the python’s pymongo.mongo_client.MongoClient constructor.
Please refer to api.mongodb.com for further information.

Take a look at the example of the secret.yaml file here.

If your MongoDB server is not hosted, you must setup MongoDB authorization (for example via /etc/mongodb.
conf):

/etc/mongodb.conf
net:

bindIp: 0.0.0.0
port: 27017

security:
authorization: enabled

38 Chapter 6. MongoDB configuration

https://api.mongodb.com/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
https://api.mongodb.com/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient
https://github.com/janhybs/ci-hpc/blob/master/cfg/secret.template.yaml

CI-HPC Documentation

6.1.1 secret.yaml examples

1. Example 1 (single host):

hello-world:
database:
host: [mongodb.server.example.com:27017]
connect: true
authSource: admin
username: writer
password: password-here

2. Example 2 (mongodb configuration with 3 hosts):

hello-world:
database:
host:

- cluster0-shard-00-00-foobar.mongodb.net:27017
- cluster0-shard-00-01-foobar.mongodb.net:27017
- cluster0-shard-00-02-foobar.mongodb.net:27017

replicaSet: Cluster0-shard-0
connect: true
authSource: admin
authMechanism: SCRAM-SHA-1
ssl: true
username: writer
password: password-here

If secret.yaml is setup properly, you can easily collect benchmark data to a database. By default the data will be
saved into a database with the name of your project name. You can change this behaviour by adding another section
to the secret.yaml:

hello-world:
artifacts:
db_name: customDbName # name of the database to save date to

col_timers_name: customRepColName # name of the collection which will contain
benchmark data (reports, frames)

col_files_name: customFSColName # name of the collection which will contain
files and logs when error during run occured

Note: Assuming we are trying to override artifacts location fot the project hello-world

6.1. secret.yaml structure 39

CI-HPC Documentation

40 Chapter 6. MongoDB configuration

CHAPTER 7

Configuring Flask server

Note: assuming you have an Apache working and running.

7.1 Start the flask server with the help of a bin/server script:

bin/server start

To test the server is running, execute:

bin/server status

And to stop the running server call:

bin/server stop

And if you visit the url http://0.0.0.0:5000/ in your browser (it may take couple seconds), you shoud see the
message:

Your server is running!

In opposite case, check the log ci-hpc.log located at the repository root or try to to execute the script bin/
server without any arguments (this will start the server not in the background)

7.1.1 Configuring the server host and port

By default the server is accessible for anyone. You can restrict this by scecifying --host=<hostmask> where
<hostmask> is the hostname to listen on. Default to 0.0.0.0.

To change the port of the server API server specify --port=<portval> options, where <portval> is the interger
value of your API server port.

To see all the options you can change see bin/server -- --help.

41

https://www.linux.com/learn/apache-ubuntu-linux-beginners

CI-HPC Documentation

7.2 Configuring www folder

Edit index.html located in www folder. Lines 41 and 42 is all you need to change. Simple change the values so
they match your project and server:

By default project is set to hello-world and ip is just a dummy url. The IP you specify must be accessible by
another computer!

projectName: 'hello-world',
flaskApiUrl: 'http://flask.server.example.com:5000',

7.3 Visualisation settings aka what to visualise

Edit visualisation settings for yout project The yaml file is located at cfg/<project>.yaml. e.g. if you have
project with name foo, the location is cfg/foo.yaml

This configuration is reasonably straightforward. You fill out the info about your project and then just say what
variables will be used for what cause. Take a look at example file which explains what variable is for cause.

7.4 [optional] Create a symlink to Apache www folder:

Note: assuming you are located at the repository root

ln -s $(pwd)/www /var/www/html/ci-hpc

If you visit http://localhost/ci-hpc you should see the the results.

42 Chapter 7. Configuring Flask server

https://github.com/janhybs/ci-hpc/tree/master/cfg/hello-world

	Showcase
	Visualisation page
	View configuration
	Zoom detail
	Boxplot view chart
	Detail view
	Link to commit
	Frame breakdown
	Scaling mode view
	Commit squeeze

	CI-HPC Documentation & Installation
	Prerequisites

	Installing a Jenkins server
	Configuring a Jenkins server
	cihpc arguments

	Configuring project on HPC server
	config.yaml specification
	Terminology
	config.yaml example
	config.yaml structure
	config.yaml variables specification
	config.yaml collect specification

	MongoDB configuration
	secret.yaml structure
	secret.yaml examples

	Configuring Flask server
	Start the flask server with the help of a bin/server script:
	Configuring the server host and port

	Configuring www folder
	Visualisation settings aka what to visualise
	[optional] Create a symlink to Apache www folder:

